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Machine Learning is just Statistical

Mechanics with Better Marketing

by Vaibhav Kalvakota

Introduction

Both machine learning and statistical mechanics work with the complexity of high-dimensional
spaces1, emergent properties, and stochastic dynamics. Now of course, statistical mechanics
studies the macroscopic behavior of systems composed of many interacting components
using results from probability and statistics to bridge the gap between microscopic details and
observable phenomena. In fact, it does this so well that most of the intuition to the workings
of the macroscopic world are built on it from the fine-grained details.

Machine learning uses probabilistic tools to learn patterns in large datasets, optimizing
over parameter spaces to make predictions or discover underlying structures, to carry out a
particular task. There are many aspects of statistical mechanics, such as Boltzmann distri-
butions, free energy minimization, and stochastic processes that lie deeply within the tools
and algorithms that drive ML, including stochastic gradient descent, regularization, and
probabilistic modeling.

(There are actually many other overlaps and applications of pure mathematics in machine
learning as well, which we will not discuss.)

Boltzmann

One of the most fundamental correlations between the two subjects – of machine learning and
statistical mechanics – is the obvious use of a number of information theoretic components
in machine learning. When we seek to define a loss function J(θ) (where θ are the parameters
of the model), we usually define it to be something like the cross entropy loss function,

JCE(P, Q, θ) = −EP (logQ) , (11.1)
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1By this, I want you to imagine a large parameter space and you want to find the optimal configuration in
machine learning.
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Fig: The minima is the little red dot in the landscape of different loss configurations. By Vaibhav

Kalvakota

where P is the true distribution and Q is the selected probability distribution. E denotes
the expectation value and this just becomes the usual form of −P logQ. A loss function
measures how “off" the model is from the actual probability distribution. Yes, yes, there’s
some measure theory stuff that happens when talking about this quantity rigorously. This is
essentially measuring the Kullback-Leiblar divergence, but at the heart of it, all you need to
worry about is that it tells you the “loss" of an observed distribution. Now what these loss
functions also tell you is how bad the other choices are.

Imagine a huge parameter space. The problem in machine learning is to find the optimal
configuration through this parameter space so that you have the least loss – best fit for the
predictions – in the model. In the context of supervised learning2, this is simply just making
better predictions, and might involve some more tweaking with regularization/dropouts/etc.

2That is, when you are providing the outputs for the model to train on instead of just trying to find features
in the inputs.
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Figure-1 shows you the minima of the loss functions: the optimal state, so to speak, and
this is really hard both computationally as well as theoretically sometimes, to reach. For most
of the heavy machine learning models we use, the choice is that of stochastic gradient descent –
a fancy way of using the extremum derivative rule for arbitrary “learning steps". This brings
down the computational costs by a significant margin over normal gradient flow where you
have to estimate with smaller strides. The price of using SGD over batch gradient descent
is that you never really converge onto the minima; you just get really really close to it. As
physicists, we obviously never complain about doing stuff like this.

In generative machine learning, more specifically a branch called ICA – Independent

Components Analysis, you end up with a heavy reliance on probabilistic models. Simply put,
given a probability distribution, you want to find the loss function minima as usual, but the
way you do so isn’t by wildly sampling3 over the parameter space or training with more and
more data; you instead view a Boltzmannian approach to machine learning. The slogan here
is: loss functions are no longer just minimas, they are energy functions, and you seek to minimize
the energy.

In a Boltzmann distribution, for some input x, you have an associated energyE(x) and a
probability given by

p(x) =
exp (−βE)

Z
, (11.2)

where Z is a normalization term. Of course, the physics people must have said who are
you kidding Vai that is a partition function, just call it that, and yes it is a partition function4

but bear with me for a second, will you?

The objective here is to minimize the energy loss functionE(x), but not with ordinary
gradient descent. Instead, we want to use a flow F so that the action of F on the energy space5

E is to make higher values of the energy function larger and the lower values smaller. So, you
no longer just minimize by walking along the function, you stretch it out, by something like
ẋ(t) = −∇E(x), something like an inverse curvature flow.

This is something that has been done for quite a while in machine learning now, and
Yann LeCun6 has a very good paper on this. In working with energy loss functions instead of
ordinary loss functions, we have to restrict to certain kinds of loss functions, but the most
used loss function, the cross-entropy loss (11.2) is inherently a natural energy function.

3By this I mean taking steps in the parameter space to minimize the loss function.
4This field of research is called canonical ensemble learning where we seek to define partition functions and

minimize the energy function.
5That is, a parametric space w.r.t the energy function.
6https://yann.lecun.com/exdb/publis/pdf/lecun-06.pdf
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Attention Is All You Have

A natural sort of continuation from the above discussion is to talk about the partition function
Z that I didn’t want to specifically talk about. I still don’t, because there are subtleties around
actually computing it. Spoiler: you don’t really consider it a “computable" quantity, but that
is fine.

When you work with Transformer neural networks, you usually work with the softmax
function by taking in the raw logits zi and producing a weighted attention weight pi:

softmax(z) =
exp zi∑
exp zi

. (11.3)

Look carefully at the denominator term. It is technically just a partition function, and this
would generate “moments" akin to correlators like ⟨x1, x2, x3 . . . xn⟩.

The first moment is the Helmholtz free energy F = − logZ , which is a very interesting
term. But there are more terms that also appear in working with these models, the most
important of them being the entropyS. This is the usual Shannon entropy, but there are many
useful things that come out of these two terms.

The entropy
S = −pi log pi (11.4)

calculates the uncertainty of the model. And LLMs are all about making that trade-off between
very deterministic responses and overly diverse responses. This is a very simple task indeed; for
even something as well trained as GPT-4o mini, you can end up with responses that will be
too deterministic. The most natural way an LLM generates an output is by greedy sampling,
where it simply picks the tokens with the highest post-softmax’d weights. However, the issue
with this is that for out-of-distribution scenarios, the responses will be – trash. So models
typically use temperature to make more diversified generations. There is a trade-off between
strictly deterministic and highly diverse outputs that models require, and it was suggested early
this year that there be dynamic temperature sampling using entropy. Which is really really
interesting, and more recently, @xjdr started Entropix, which is (last I remember) a Llama 3.1
model with entropy sampling. I am, in fact, working on related things with entropy sampling
for attention sparsity that could potentially make the complexity order of these models less
thanO(n2) orO(n

√
n) as is usually expected from adaptive sparsity. You could, alternatively,

use the free energy, which technically captures more information than the entropy. In fact,
sampling with free energy would work on two sides: one, it would focus on the lower energy
functions subspace ofE and could potentially sample a larger subset, and two, it would update
the usual uncertainty metrics like entropy and variance-entropy. However, I am unaware of
any models that use this yet.
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Let me illustrate two machine-learning-in-physics topics that I think are really interesting.
This is of course going to be somewhat more technical than what I talked above. 7

Calabi-Yau Machine Learning

This is one of the most ambitious projects I have seen in quite some time in theoretical physics
that has numerical calculations. Calabi-Yau manifolds are Ricci-flat objects8 in string theory
that have many applications in dimensional compactifications of extra dimensions.

Without going into too much technicalities, due to a high level of sophistication as well as
my own lack of competence to phrase the technicalities in a readable format, the basic idea is
just that Calabi-Yau manifolds are closed Kahler manifolds (these are complex manifolds with
a hermitian metric). More specifically, a Calabi-Yau manifold is a compact Kahler manifold
so that equivalently, (1) the first Chern class9 vanishes, and (2) there exists a g that is Ricci
flat. Another way of stating this is that there is a non-vanishing holomorphic n-form or has
holonomy10 in the special unitary group SU(n). These manifolds generally appear in string
theory when working with dimensional compactifications, as in taking a description of a 10D
N = 1 SUSY theory with a low-energy limit on a D = 4 manifold, with the remaining 6
dimensions reduced onto a Calabi-Yau manifold. There are certain topological invariants called
Hodge numbers, which for some level of vague intuition, are related to the Euler characteristic
of the manifold.

At a high level, we basically just want to be able to calculate these Hodge numbers. You
can just think of this process as taking a list of pre-calculated complete-intersection Calabi-Yau
manifolds data with the Hodge numbers and train a neural network using supervised learning
and predict Hodge numbers simply, by taking a huge corpus of these Calabi-Yau data, it is
possible to train a neural network that predicts the Hodge numbers very effectively. There are
other Calabi-Yau calculations where neural networks help, see for instance a recent paper by
Manki et al11. See also this paper12 which has some excellent discussions on the string theory
arena of machine learning.

Discrete Theory Space 101

The above discussion of CY manifold machine learning was straightforward to speculate on.
However, in many cases, there are no discrete theory spaces for a particular constraint problem.

7To be fair, all I did was talk about energy based models.
8That is, the contracted Ricci tensor is zero, while the Riemann tensor need not be zero.
9https://en.wikipedia.org/wiki/Chern Class

10See for instance, https://ncatlab.org/nlab/show/holonomy
11Cristofero S. Fraser-Taliente, Thomas R. Harvey, and Manki Kim. 2024. Not So Flat Metrics. 11,

https://arxiv.org/abs/2411.00962
12Andrei Constantin. 2022. Intelligent Explo- rations of the String Theory Landscape
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My example of this would be the Wheeler-DeWitt equation,

HΨ[g,Φ] = 0 , (11.5)

where g is the metric and Φ are the matter fields on the manifold (M, g). States of this
constraint are hard to solve unless you impose specific conditions such as asymptotic bulk
limits, restriction to isometry groups, etc. and compose the Hilbert space of perturbative
canonical quantum gravity when solved around perturbations. One could ask if there is
a machine learning optimization task that could help us solve constraint (11.5). This is a
technical problem but just consider the following. Take the decomposition of WDW states
Ψ[g,Φ] into two “branches",Z+ andZ−. This happens because the Hamiltonian constraint
is quadratic in nature, and usually there is one dominant branch. In any case, the collection
of Z generate the so-called “theory space" and have a universal counterterm S[g,Φ] from
holographic renormalization that applies to the entire theory space. This is good.

However, if you want to model neural networks that predict these counterterms, unlike
the prediction of Hodge numbers, you end up with terms that are not “discrete", in the sense
that numerically, it does not make sense to have a collection of universal counterterms that
define a particular theory space simply because there aren’t a discrete subset of these to begin
with. You could seek to define other things that could be more numerically discrete, so that
for specific cases you have specific values and then try to predict the values for the term in
other cases. This goes on to just illustrate a level of obstruction for what can be computed
and what cannot be, even if fundamentally they are just purely numeric coefficients.

In Phenomenology

Often in physics, we have to calculate physical couplings for theories. These are quantities that
tell us a lot about the theory and the concretely observable properties of the theory as well.
In particle collider experiments such as at the LHC (CMS or ATLAS), by computing the
phenomenology of particle collisions, you can gain a lot of insight into the interaction between,
say, partons. As a way of illustrating the role of machine learning in such phenomenological
calculations, when working with QCD, it is very important to work with parton distribution
functions, which are measured in partonic interaction experiments and give information about
the cross-sections and interactions. The usual way of calculating or checking these distribution
functions are either too complex or too time-taking, due to which large-scale computations
become less feasible. In this paper13, the collaborators trained a neural network to calculate the
log-likelihood χ2 from parton experiments at LHC. In fact, machine learning finds several
roles in hadronic physics and pheno/experiment research, such as in working with meson
production, heavy-ion collisions, and even beyond standard model particle interactions.

13DianYu Liu, ChuanLe Sun, and Jun Gao. 2022. Machine learning of log-likelihood functions in global
analysis of parton distributions. JHEP, 08:088
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Theory vs Experiment

Here I would like to draw a comparison that I think is very important. In high energy physics
theory, there is an inherent distinction between theory and experiment. When I say that there
is holography in an evaporating black hole spacetime, I typically mean that there are some
concrete observables, but these aren’t observables that you can actually calculate in real life as
a part of an experiment.

For that matter, one of the last theory-meets-experiment timelines we had was closed
around the time the CP violation was observed, because it was an observable phenomena. We
do not have a way to calculate the amount of radiation collected from an evaporating black
hole in anti-de Sitter space or the entropy of an island in AdS/CFT. This is the case with a lot
of hep-th. The case with machine learning is the polar opposite; there are significantly good
resources to actually check a theory. This has been known from the time we had RNNs and
LSTMs, which still hold up nearly as well as some of the smaller-end base model Transformer
architectures like BERT. In such cases, the line between theory and “experiment" must not be
drawn, and the mathematical (often referred to as “pedantic") aspects that comprise machine
learning should not be discarded. Since, after all, machine learning is essentially statistical
mechanics with better marketing.

However, there is an important distinction between physics and the applied physics aspects
of machine learning. By this, I mean that there are many things like Ising models, diffusion
models, Langevin dynamics, phase transitions, etc. that are used in machine learning that arise
from statistical mechanics. However, this does not count as doing physics. I say this because
the 2024 Nobel Prize in physics was controversial and many (hep-th) academics questioned
the principles on which this was given. However, if there is stringent applied physics being
used in things like quantum computing or machine learning, this lies within the domain of
“physics" in general.

Conclusion

In summary, there are a lot of interesting stuff to work on in machine learning and physics,
and the overlaps between the two fields14, and you should go check out the arXivs for hep-th
and cs-LG (or stat-ML and cs-AI). And the so-called “this part of Twitter" (tpot) will illustrate
the necessity of this article.

14There’s also stuff with algebraic geometry in singular learning theory, which has some really exciting
mathematical prospects. See Sumio Watanabe. 2009. Algebraic Geometry and Statistical Learning Theory.
Cambridge Monographs on ACM. Cambridge Press.
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